Iimathiriyeli ezinomacala amabini, njengegraphene, zinomtsalane kuzo zombini usetyenziso lwesiqhelo lwesemiconductor kunye nokusetyenziswa kwe-nascent kwi-electronic flexible. Nangona kunjalo, ukomelela okuphezulu kwegraphene kubangela ukuqhekeka kuxinzelelo oluphantsi, nto leyo eyenza kube nzima ukuthatha ithuba leepropathi zayo ezingaqhelekanga ze-elektroniki kwi-elektroniki eyolulekayo. Ukuvumela ukusebenza okugqwesileyo okuxhomekeke kuxinzelelo lweekondaktari zegraphene ezicacileyo, senze igraphene nanoscrolls phakathi kweeleya ezipakishweyo zegraphene, ezibizwa ngokuba yi-multilayer graphene/graphene scroll (MGGs). Ngaphantsi koxinzelelo, eminye imisongo idibanise imimandla ecandiweyo yegraphene ukugcina uthungelwano lokutyhutyha oluvumela ukuqhuba okugqwesileyo kuxinzelelo oluphezulu. Ii-MGG ze-Trilayer ezixhaswa kwii-elastomers zigcine i-65% ye-conductance yazo yokuqala kwi-100% strain, ehambelana necala lokuhamba kwangoku, ngelixa iifilimu ze-trilayer ze-graphene ngaphandle kwe-nanoscroll zigcine kuphela i-25% ye-conductance yazo yokuqala. I-carbon transistor enwebekayo eyenziwe kusetyenziswa i-MGGs njenge-electrodes ibonise ukuhanjiswa kwe> 90% kwaye igcine i-60% yemveliso yayo yangoku kwi-120% yoxinzelelo (ehambelana nolwalathiso lwezothutho zentlawulo). Ezi transistors zinwebeka kakhulu kwaye ziselubala zonke zekhabhoni zinokwenza i-optoelectronics enobunkunkqele enokunwebeka.
I-electronics transparent ye-stretchable yintsimi ekhulayo enezicelo ezibalulekileyo kwiinkqubo eziphambili ze-biointegrated (1, 2) kunye nokukwazi ukudibanisa kunye ne-optoelectronics enwebekayo (3, 4) ukuvelisa iirobhothi ezithambileyo kunye neziboniso. I-Graphene ibonisa iipropati ezinqwenelekayo kakhulu zobunzima be-athomu, ukukhanya okuphezulu, kunye ne-conductivity ephezulu, kodwa ukuphunyezwa kwayo kwizicelo ezinwebekayo kuthintelwe ukuthambekela kwayo kokuqhekeka kwiintlobo ezincinci. Ukoyisa imida yomatshini wegraphene kunokuvumela ukusebenza okutsha kwizixhobo ezicacileyo ezilula.
Iimpawu ezikhethekileyo zegraphene zenza umviwa onamandla kwisizukulwana esilandelayo se-electrode conductive transparent (5, 6). Xa kuthelekiswa neyona isetyenziswa ngokuqhelekileyo i-transparent conductor, i-indium tin oxide [ITO; I-100 ohms/square (sq) kwi-90% transparency], i-graphene ye-monolayer ekhuliswe yi-chemical vapor deposition (CVD) inomxube ofanayo wokumelana namaphepha (125 ohms / sq) kunye nokucaca (97.4%) (5). Ukongeza, iifilimu zegraphene zinokuguquguquka okungaqhelekanga xa kuthelekiswa ne-ITO (7). Ngokomzekelo, kwi-substrate yeplastiki, ukuqhuba kwayo kunokugcinwa nakwi-radius egobileyo ye-curvature encinci njenge-0.8 mm (8). Ukuqhubela phambili ukuphucula ukusebenza kwayo kombane njengomqhubi oguquguqukayo ocacileyo, imisebenzi yangaphambili iphuhlise izixhobo ze-graphene hybrid ezine-dimensional (1D) yesilivere ye-nanowires okanye i-carbon nanotubes (CNTs) (9-11). Ngaphezu koko, igraphene isetyenziswe njengee-electrode zemixed dimensional heterostructural semiconductors (ezifana ne-2D bulk Si, 1D nanowires/nanotubes, kunye ne-0D quantum dots ) (12), iitransistors eziguquguqukayo, iiseli zelanga, kunye ne-light-emitting diode (LEDs) (13) –23).
Nangona i-graphene ibonise iziphumo ezithembisayo ze-electronics flexible, ukusetyenziswa kwayo kwi-electronics stretchables inqunyelwe yimpahla yayo yomatshini (17, 24, 25); I-graphene inokuqina kwe-in-plane ye-340 N / m kunye ne-Young's modulus ye-0.5 TPa (26). Inethiwekhi ye-carbon-carbon eyomeleleyo ayiboneleli naziphi na iindlela zokulahla amandla kuxinzelelo olusetyenzisiweyo kwaye ngoko ke luqhekeka ngokulula ngaphantsi kwe-5% yoxinzelelo. Ngokomzekelo, i-graphene ye-CVD edluliselwe kwi-polydimethylsiloxane (PDMS) i-elastic substrate inokugcina kuphela ukuhanjiswa kwayo ngaphantsi kwe-6% yoxinzelelo (8). Ubalo lwethiyori lubonisa ukuba ukuqhekeka kunye nokunxibelelana phakathi kweeleya ezahlukeneyo kufuneka kunciphise ngamandla ukuqina (26). Ngokupakisha igraphene kwiileya ezininzi, kuxelwa ukuba le bi- okanye i-trilayer graphene iyakwazi ukunwebeka ukuya kwi-30% yoxinzelelo, ibonisa utshintsho lokumelana namaxesha angama-13 amancinci kune-monolayer graphene (27). Nangona kunjalo, oku kunwebeka kusephantsi kakhulu kwi-state-of-the-art enwebekayo c onductors (28, 29).
I-Transistors ibalulekile kwizicelo ezinwebekayo kuba zenza ukuba kufundwe inzwa ephucukileyo kunye nohlalutyo lwesignali (30, 31). I-Transistors kwi-PDMS ene-graphene ye-multilayer njengomthombo / i-electrode yokukhupha kunye nezinto zetshaneli zinokugcina ukusebenza kombane ukuya kuthi ga kwi-5% yoxinzelelo (32), ephantsi kakhulu kwexabiso elincinci elifunekayo (~50%) kwizinzwa zokujonga impilo kunye nesikhumba sombane ( 33, 34). Kungekudala, indlela ye-graphene kirigami ihlolwe, kwaye i-transistor egayiweyo yi-electrolyte engamanzi inokolulwa ukuya kuthi ga kwi-240% (35). Nangona kunjalo, le ndlela ifuna igraphene emisiweyo, eyenza nzima inkqubo yokwenziwa.
Apha, sifezekisa izixhobo zegraphene ezinwebeka kakhulu ngokudibanisa imisongo yegraphene (~1 ukuya kwi-20 μm ubude, ~0.1 ukuya ku-1 μm ububanzi, kunye ne-10 ukuya kwi-100 nm ukuphakama) phakathi kweeleya zegraphene. Sicinga ukuba le misongo yegraphene inokubonelela ngeendlela eziqhubayo zokuvala iintanda kumaphepha egraphene, ngaloo ndlela kugcinwe ukuhanjiswa okuphezulu phantsi koxinzelelo. Imisongo yegraphene ayifuni ukudibanisa okongeziweyo okanye inkqubo; zenziwe ngokwemvelo ngexesha lenkqubo yokudlulisa emanzi. Ngokusebenzisa i-multilayer G / G (i-graphene / graphene) imiqulu (MGGs) i-graphene i-electrodes enwebekayo (umthombo / i-drain kunye nesango) kunye ne-CNTs ye-semiconducting, sakwazi ukubonisa ii-transistors ze-carbon transistors ezicacileyo kakhulu kwaye zinwenwe kakhulu, ezinokolulwa kwi-120. I-% strain (ihambelana nesikhokelo sothutho lwentlawulo) kwaye igcine i-60% yemveliso yabo yangoku. Le yeyona transistor ecacileyo esekwe kwikhabhoni ukuza kuthi ga ngoku, kwaye ibonelela ngoku okwaneleyo ukuqhuba i-LED ye-inorganic.
Ukuvumela i-electrode yegraphene ecacileyo kwindawo enkulu, sikhethe igraphene ekhule kwi-CVD kwi-Cu foil. I-Cu foil yanqunyanyiswa embindini we-CVD quartz tube ukuvumela ukukhula kwegraphene kumacala omabini, ukwenza izakhiwo ze-G / Cu / G. Ukudlulisa igraphene, saqala sajija umaleko obhityileyo wepoly (methyl methacrylate) (PMMA) ukukhusela elinye icala legraphene, esalithiya ngokuba yigraphene engaphezulu (ngokuchaseneyo nelinye icala legraphene), kwaye emva koko, yonke ifilimu (PMMA / top graphene / Cu / bottom graphene) yayifakwe kwi (NH4) 2S2O8 isisombululo sokucima iCu foil. Igraphene yecala elisezantsi ngaphandle kwengubo ye-PMMA ngokuqinisekileyo iya kuba neentanda kunye neziphene ezivumela i-etchant ukuba ingene (36, 37). Njengoko kubonisiwe kwi-Fig. 1A, phantsi kwempembelelo yoxinzelelo lomphezulu, imimandla yegraphene ekhutshiweyo yaqengqeleka ibe yimiqulu kwaye emva koko iqhotyoshelwe kwifilimu eseleyo ye-top-G/PMMA. Imisongo ephezulu ye-G/G inokudluliselwa kuyo nayiphi na i-substrate, efana ne-SiO2/Si, iglasi, okanye i-polymer ethambileyo. Ukuphinda le nkqubo yokudlulisa amaxesha amaninzi kwi-substrate efanayo inika izakhiwo zeMGG.
(A) Umzobo oqingqiweyo wenkqubo yokwenziwa kwe-MGGs njenge-electrode elula. Ngethuba lokudluliselwa kwegraphene, i-graphene yangasemva kwi-Cu foil yaphulwa kwimida kunye neziphene, ihlanganiswe ibe yimilo engafanelekanga, kwaye ifakwe ngokuqinileyo kwiifilimu eziphezulu, zenza i-nanoscroll. Ikhathuni yesine ibonisa ulwakhiwo lweMGG oluqokelelweyo. (B kunye no-C) Iimpawu ze-TEM eziphezulu ze-high-resolution ze-MGG ye-monolayer, igxininise kwi-graphene ye-monolayer (B) kunye ne-scroll (C) kummandla, ngokulandelanayo. I-inset ye (B) ngumfanekiso ophantsi wokukhulisa obonisa i-morphology iyonke ye-monolayer MGGs kwigridi ye-TEM. I-Insets of (C) ziiprofayili zobukhulu ezithathwe kwiibhokisi ezixande eziboniswe emfanekisweni, apho imigama phakathi kweendiza zeathom yi-0.34 kunye ne-0.41 nm. (D ) Ikhabhoni ye-K-edge EEL ispectrum enophawu lomzobo π* kunye no σ* iincopho ezibhalwe. (E) Umfanekiso weCandelo we-AFM womsongo we-G/G we-monolayer oneprofayile yobude ecaleni komgca wamachokoza atyheli. (F ukuya ku-I) i-microscopy ye-Optical kunye nomfanekiso we-AFM we-trilayer G ngaphandle (F kunye no-H) kunye nemisongo (G kunye ne-I) kwi-300-nm-thick SiO2 / Si substrates, ngokulandelanayo. Imisongo emeleyo kunye nemibimbi yayibhalwe ukuqaqambisa umahluko wabo.
Ukuqinisekisa ukuba imiqulu iqengqeleke igraphene ngokwendalo, siye saqhuba i-electron microscopy (TEM) yokuhanjiswa kwe-high-resolution (TEM) kunye nokulahleka kwamandla e-electron (EEL) kwizifundo zespectroscopy kwimonolayer top-G/G scroll structures. Umzobo 1B ubonisa ubume be-hexagonal yegraphene ye-monolayer, kwaye i-inset yi-morphology iyonke yefilimu egqunywe kumngxuma wekhabhoni omnye wegridi ye-TEM. I-graphene ye-monolayer ijikeleza uninzi lwegridi, kwaye ezinye iiflakes zegraphene kubukho be-stacks ezininzi zamakhonkco anehexagonal ziyavela (Fig. 1B). Ngokusondeza kumqulu omnye (Fig. 1C), siye saqwalasela isixa esikhulu semiphetho yelattice yegraphene, kunye nesithuba selattice kuluhlu lwe-0.34 ukuya ku-0.41 nm. Le milinganiselo icebisa ukuba iiflakes zisongelwe ngokungacwangciswanga kwaye aziyiyo igraphite egqibeleleyo, enesithuba selathisi esiyi-0.34 nm kwi-"ABAB" yokupakisha. Umzobo we-1D ubonisa i-carbon K-edge EEL spectrum, apho incopho ye-285 eV ivela kwi-π* orbital kunye nenye ejikeleze i-290 eV ngenxa yenguqu ye-σ* orbital. Ingabonwa ukuba i-sp2 bonding ilawula kwesi sakhiwo, iqinisekisa ukuba imisongo inemifanekiso ephezulu.
I-Microscopy ye-Optical kunye ne-atomic force microscopy (AFM) imifanekiso inika ingqiqo ekuhanjisweni kwe-graphene nanoscroll kwi-MGGs (Umfanekiso 1, E ukuya ku-G, kunye namakhiwane. S1 kunye ne-S2). Imisongo isasazwa ngokungacwangciswanga phezu komhlaba, kwaye ukuxinana kwabo kwinqwelomoya kunyuka ngokulinganayo kwinani leeleya ezipakishweyo. Imisongo emininzi idityanisiwe ibe ngamaqhina kwaye ibonisa ubude obungeyoyunifomu kuluhlu lwe-10 ukuya kwi-100 nm. Ziyi-1 ukuya kwi-20 μm ubude kunye ne-0.1 ukuya kwi-1 μm ububanzi, kuxhomekeke kubukhulu beeflakes zabo zokuqala zegraphene. Njengoko kubonisiwe kwiSazobe soku-1 (H kunye no-I), imisongo inobungakanani obukhulu kakhulu kunemibimbi, ekhokelela kujongano olurhabaxa kakhulu phakathi kweeleya zegraphene.
Ukulinganisa iimpawu zombane, senze iifilimu zegraphene kunye okanye ngaphandle kwezakhiwo zokuskrola kunye ne-layer stacking kwi-300-μm-wide kunye ne-2000-μm-long strips usebenzisa i-photolithography. Ukuchasana kweprobe ezimbini njengomsebenzi woxinzelelo kuye kwalinganiswa phantsi kweemeko ezingqongileyo. Ubukho bemiqulu bunciphise ukuxhathisa kwe-monolayer graphene nge-80% kunye nokunciphisa i-2.2% kuphela kwi-transmittance (fig. S4). Oku kuqinisekisa ukuba i-nanoscrolls, enobuninzi obuphezulu ukuya kwi-5 × 107 A / cm2 (38, 39), yenza igalelo elihle kakhulu lombane kwi-MGG. Phakathi kwazo zonke i-mono-, i-bi-, kunye ne-trilayer plain graphene kunye ne-MGGs, i-MGG ye-trilayer inokuqhuba kakuhle kunye nokucaca okuphantse kube yi-90%. Ukuthelekisa kunye neminye imithombo yegraphene echazwe kwiincwadi, siphinde silinganise i-probe-probe sheet resistances (umkhiwane. S5) kwaye zidweliswe njengomsebenzi wokuhambisa kwi-550 nm (umkhiwane S6) kwi-Fig. 2A. I-MGG ibonisa i-conductivity ethelekisayo okanye ephezulu kunye nokungafihli kune-artificially stacked multila yer plain graphene kunye nokunciphisa i-graphene oxide (RGO) (6, 8, 18). Qaphela ukuba i-sheet resistances ye-artificially stacked multilayer plain graphene evela kuncwadi iphezulu kancinane kunolo lweMGG yethu, mhlawumbi ngenxa yeemeko zabo zokukhula ezingaphucukanga kunye nendlela yokudlulisa.
(A) I-probe sheet resistances ezine versus transmittance kwi-550 nm kwiintlobo ezininzi zegraphene, apho izikwere ezimnyama zibonisa i-mono-, bi-, kunye ne-trilayer MGGs; izangqa ezibomvu kunye nonxantathu oluhlaza zihambelana ne-multilayer plain graphene ekhule kwi-Cu kunye ne-Ni ukusuka kwizifundo zikaLi et al. (6) kunye noKim et al. (8), ngokulandelelanayo, kwaye emva koko idluliselwe kwiSiO2/Si okanye iquartz; kunye nonxantathu abaluhlaza amaxabiso e-RGO kwiidigri ezahlukeneyo zokunciphisa ukusuka kufundo lweBonaccorso et al. (18). (B kunye no-C) Utshintsho oluqhelekileyo lokumelana ne-mono-, i-bi- kunye ne-trilayer ye-MGG kunye ne-G njengomsebenzi we-perpendicular (B) kunye ne-parallel (C) yoxinzelelo ukuya kwicala lokuhamba ngoku. (D) Utshintsho oluqhelekileyo lokumelana ne-bilayer G (obomvu) kunye ne-MGG (emnyama) phantsi kwe-cyclic strain ukulayisha ukuya kwi-50% ye-perpendicular strain. (E) Utshintsho oluqhelekileyo lokumelana ne-trilayer G (obomvu) kunye ne-MGG (emnyama) phantsi koxinzelelo lwe-cyclic ukulayisha ukuya kwi-90% yoxinzelelo oluhambelanayo. (F) Utshintsho lwe-capacitance oluqhelekileyo lwe-mono-, i-bi- kunye ne-trilayer G kunye ne-bi- kunye ne-trilayer ye-MGG njenge-functio n yoxinzelelo. I-inset yisakhiwo se-capacitor, apho i-polymer substrate yi-SEBS kunye ne-polymer dielectric layer yi-SEBS eyi-2-μm-thick.
Ukuvavanya ukusebenza kokuxhomekeka koxinzelelo lweMGG, sadlulisela igraphene kwi-thermoplastic elastomer styrene-ethylene-butadiene-styrene (SEBS) substrates (~ 2 cm ububanzi kunye ne-5 cm ubude), kunye ne-conductivity yalinganiswa njengoko i-substrate yoluliwe. (jonga i-Materials and Methods) zombini i-perpendicular kunye ne-parallel ukuya kwindlela yokuhamba kwangoku (umzobo 2, B kunye no-C). Ukuziphatha kombane okuxhomekeke kuxinzelelo kuphuculwe ngokubandakanywa kwe-nanoscroll kunye nokwanda kwamanani eeleyile zegraphene. Ngokomzekelo, xa i-strain i-perpendicular flow flow yangoku, kwi-graphene ye-monolayer, ukongezwa kwemiqulu yokwandisa ukuxhatshazwa kombane ukusuka kwi-5 ukuya kwi-70%. Ukunyamezela ubunzima be-trilayer graphene nako kuphuculwe kakhulu xa kuthelekiswa ne-monolayer graphene. Nge-nanoscrolls, kwi-100% ye-perpendicular strain, ukuchasana kwesakhiwo se-MGG se-trilayer kwanda kuphela nge-50%, xa kuthelekiswa ne-300% ye-trilayer graphene ngaphandle kwemiqulu. Utshintsho lokuchasa phantsi komthwalo we-cyclic strain ing lwaphandwa. Ukuthelekisa (Umfanekiso we-2D), ukuchasana kwefilimu ye-plain bilayer graphene inyuke malunga namaxesha e-7.5 emva kwemijikelezo ye-700 kwi-50% ye-perpendicular strain kwaye iqhubeka ikhula ngoxinzelelo kumjikelo ngamnye. Ngakolunye uhlangothi, ukuchasana kwe-bilayer MGG kwanda kuphela malunga namaxesha e-2.5 emva kwemijikelo ye-700. Ukufaka isicelo ukuya kuthi ga kwi-90% yoxinzelelo ecaleni kolwalathiso oluhambelanayo, ukuchasana kwe-trilayer graphene kwandiswe ~ kwamaxesha angama-100 emva kwemijikelo ye-1000, ngelixa kuphela ~ 8 amaxesha kwi-trilayer MGG (Umfanekiso 2E). Iziphumo zokuhamba ngebhayisekile ziboniswe kwifig. S7. Ukonyuka okukhawulezileyo kokuxhathisa ecaleni kwendlela yoxinzelelo olunxuseneyo kungenxa yokuba ukuqhelaniswa neentanda kuxhomekeke kwicala lokuhamba kwangoku. Ukuphambuka kokuchasana ngexesha lokulayisha kunye nokukhupha umthwalo kubangelwa ukubuyiswa kwe-viscoelastic ye-SEBS elastomer substrate. Ukuchasana okuzinzile ngakumbi kwimicu yeMGG ngexesha lokuhamba ngebhayisikili kubangelwa ubukho bemiqulu emikhulu enokuthi idibanise iindawo eziqhekekileyo zegraphene (njengoko i-obse rved yi-AFM), inceda ukugcina indlela ye-percolating. Le nto yokugcina i-conductivity nge-percolating pathway iye yaxelwa ngaphambili kwintsimbi eqhekekileyo okanye iifilimu ze-semiconductor kwi-elastomer substrates (40, 41).
Ukuvavanya ezi filimu zisekwe kwigraphene njengee-electrode zesango kwizixhobo ezinwebekayo, sigqume umaleko wegraphene kunye ne-SEBS dielectric layer (2 μm ubukhulu) kwaye sabeka iliso kwinguqu ye-dielectric capacitance njengomsebenzi woxinzelelo (jonga umzobo 2F kunye neZixhobo ezongezelelweyo ze iinkcukacha). Siye saqaphela ukuba amandla ane-monolayer ecacileyo kunye ne-bilayer graphene electrode ehle ngokukhawuleza ngenxa yokulahleka kwe-in-plane conductivity yegraphene. Ngokwahlukileyo, i-capacitances efakwe kwii-MGGs kunye ne-graphene ye-trilayer ecacileyo ibonise ukonyuka kwe-capacitance kunye noxinzelelo, okulindeleke ngenxa yokunciphisa ubukhulu be-dielectric kunye noxinzelelo. Ukunyuka okulindelekileyo kwi-capacitance kuhambelana kakuhle kakhulu nesakhiwo seMGG (umzobo S8). Oku kubonisa ukuba iMGG ifanelekile njenge-electrode yesango yee-transistors ezinwebekayo.
Ukuphanda ngakumbi indima ye-graphene scroll ye-1D ekunyamezelweni koxinzelelo lwe-conductivity yombane kunye nokulawula ngcono ukwahlula phakathi kwe-graphene layers, sasebenzisa i-CNTs efakwe isitshizi ukuze ithathe indawo yemisongo yegraphene (jonga i-Supplementary Materials). Ukulinganisa izakhiwo zeMGG, sifake i-densities ezintathu ze-CNTs (oko kukuthi, i-CNT1
(A ukuya ku-C) Imifanekiso ye-AFM yee-densities ezintathu ezahlukeneyo ze-CNTs (CNT1
Ukuqonda ngakumbi amandla abo njengee-electrodes ze-electronics stretchable, siphande ngobuchule i-morphologyes ye-MGG kunye ne-G-CNT-G phantsi koxinzelelo. Imakroskopu ebonwa ngamehlo kunye ne-electron microscopy yokuskena (SEM) ayizizo ndlela zokulinganisa ezisebenzayo kuba zombini azikho umahluko wombala kwaye i-SEM ixhomekeke kubugcisa bemifanekiso ngexesha lokuskena i-electron xa igraphene ikwipolymer substrates (figs. S9 and S10). Ukuqwalasela kwi-situ umphezulu wegraphene phantsi koxinzelelo, siqokelele imilinganiselo ye-AFM kwi-trilayer MGGs kunye negraphene ecacileyo emva kokutshintshela kuncinci kakhulu (~0.1 mm ubukhulu) kunye ne-elastic SEBS substrates. Ngenxa yeziphene zangaphakathi kwi-graphene ye-CVD kunye nomonakalo wangaphandle ngexesha lenkqubo yokudlulisa, ukuqhekeka ngokuqinisekileyo kuveliswa kwi-graphene edibeneyo, kwaye ngokunyuka koxinzelelo, ukuqhekeka kwaba nzima (umzobo 4, A ukuya ku-D). Ngokuxhomekeke kwisakhiwo sokupakisha se-electrodes esekelwe kwikhabhoni, ukuqhekeka kubonisa i-morphologies eyahlukeneyo (umzobo S11) (27). Ubuninzi bendawo yokuqhekeka (echazwe njengendawo yokuqhekeka / indawo ehlalutyiweyo) ye-graphene ye-multilayer ingaphantsi kwe-graphene ye-monolayer emva koxinzelelo, oluhambelana nokunyuka kombane we-MGGs. Kwelinye icala, imisongo idla ngokujongwa ukuze ivale iintanda, ibonelela ngeendlela ezongezelelekileyo zokuqhuba kwifilimu ecudiweyo. Ngokomzekelo, njengoko kubhaliwe kumfanekiso we-Fig. 4B, umqulu obanzi wawela phezu kokuqhekeka kwi-trilayer MGG, kodwa akukho msongo wabonwa kwigraphene ethafeni (Umfanekiso 4, E ukuya ku-H). Ngokufanayo, i-CNTs nayo ibhuloho iintanda kwigraphene (umzobo S11). Ubuninzi bendawo yokuqhekeka, ubuninzi bendawo yokuskrola, kunye noburhabaxa beefilimu zishwankathelwa kumfanekiso we-4K.
(A ukuya kuH) Kwisitu AFM imifanekiso yetrilayer G/G imisongo (A ukuya kuD) kunye netrilayer G izakhiwo (E ukuya kuH) kwiSEBS ebhityile kakhulu (~0.1 mm ubukhulu) elastomer ku-0, 20, 60, kunye ne-100 % ubunzima. Iintanda ezimele kunye nemisongo zikhonjwe ngeentolo. Yonke imifanekiso ye-AFM ikwindawo ye-15 μm × 15 μm, isebenzisa umbala ofanayo wesikali somgca njengoko ubhaliwe. (I) Ukulinganisa ijometri yee-electrodes ze-graphene ezinepateni kwi-SEBS substrate. (J) Ukulinganisa imephu yecontour yolona xinzelelo luphezulu lwelogarithmic kwi-monolayer graphene kunye ne-SEBS substrate kwi-20% yoxinzelelo lwangaphandle. (K) Ukuthelekiswa koxinano lwendawo yokuqhekeka (ikholamu ebomvu), ubuninzi bendawo yokuskrola (ikholamu etyheli), kunye noburhabaxa bomphezulu (uluhlu oluluhlaza okwesibhakabhaka) kwizakhiwo ezahlukeneyo zegraphene.
Xa iifilimu zeMGG zoluliwe, kukho indlela eyongezelelweyo ebalulekileyo yokuba imiqulu inokubhula imimandla eqhekekileyo yegraphene, igcine inethiwekhi ye-percolating. Imisongo yegraphene iyathembisa kuba inokuba ngamashumi eemicrometer ubude kwaye ke ngoko ikwazi ukuvala iintanda eziqhele ukuya kwisikali semicrometer. Ngapha koko, ngenxa yokuba imisongo ine-multilayers yegraphene, kulindeleke ukuba ibe nokuxhathisa okuphantsi. Xa kuthelekiswa, uthungelwano lwe-CNT oluxineneyo (ugqithiso olusezantsi) luyafuneka ukubonelela ngesakhono sokuqhagamshelwa kwebridging esithelekisekayo, njengoko ii-CNTs zincinci (iqhele ukuba zii-micrometers ezimbalwa ubude) kwaye aziqhubeki kangako kunemisongo. Kwelinye icala, njengoko kubonisiwe kwifig. I-S12, ngelixa igraphene iqhekeka ngexesha lokolula ukulungiselela ukutsala ubunzima, imisongo ayiqhekeki, nto leyo ebonisa ukuba le yokugqibela isenokuba iyatyibilika kwigraphene engaphantsi. Isizathu sokuba zingaqhekeki kusenokwenzeka ngenxa yolwakhiwo olusongelweyo, oluqulunqwe ngamaleko amaninzi egraphene (~1 ukuya ku-2 0 μm ubude, ~0.1 ukuya ku-1 μm ububanzi, kunye ne-10 ukuya kwi-100 nm ukuphakama), imodyuli ephezulu esebenzayo kunegraphene yomaleko omnye. Njengoko ingxelo yeGreen kunye neHersam (42), i-metallic CNT networks (i-tube diameter ye-1.0 nm) inokufikelela kwi-low sheet resistances <100 ohms / sq nangona ukuxhatshazwa okukhulu kwe-junction phakathi kwe-CNTs. Ukuqwalasela ukuba imiqulu yethu yegraphene inobubanzi be-0.1 ukuya kwi-1 μm kwaye imiqulu ye-G / G ineendawo zoqhagamshelwano ezinkulu kakhulu kune-CNTs, ukuchasana noqhagamshelwano kunye nommandla woqhagamshelwano phakathi kwe-graphene kunye ne-graphene scrolls akufanele kube yimida yokugcina i-conductivity ephezulu.
Igraphene inemodyuli ephezulu kakhulu kune-SEBS substrate. Nangona ubukhulu obusebenzayo be-graphene electrode buphantsi kakhulu kunobo be-substrate, ukuqina kwegraphene amaxesha ubukhulu bayo buthelekiseka nobo be-substrate (43, 44), okubangelwa yi-moderate rigid-island effect. Senze ukuguqulwa kwe-graphene ye-1-nm-thick kwi-substrate ye-SEBS (jonga i-Supplementary Materials ngeenkcukacha). Ngokweziphumo zokulinganisa, xa i-20% yoxinzelelo isetyenziswe kwi-substrate ye-SEBS ngaphandle, ubunzima obuqhelekileyo kwi-graphene ngu ~ 6.6% (Umfanekiso we-4J kunye nomkhiwane. . Siqhathanise uxinzelelo kwi-graphene enepateni kunye nemimandla ye-substrate usebenzisa i-optical microscopy kwaye sifumene ubunzima kwingingqi ye-substrate ukuba ubuncinane kabini ubunzima kwingingqi yegraphene. Oku kubonisa ukuba ubunzima obusetyenziswa kwiipateni ze-graphene electrode zinokuvalelwa kakhulu, zenze iziqithi eziqinileyo zegraphene phezu kwe-SEBS (26, 43, 44).
Ngoko ke, ukukwazi kwe-electrodes ye-MGG ukugcina umgangatho ophezulu we-conductivity phantsi koxinzelelo oluphezulu kunokwenzeka ukuba unikwe amandla ngeendlela ezimbini eziphambili: (i) Imiqulu inokubhobhoza imimandla enqanyuliweyo ukuze kugcinwe umzila we-conductive percolation, kwaye (ii) i-multilayer graphene sheets / elastomer inokuslayida. phezu komnye, okukhokelela ekucuthekeni koxinzelelo kwii-electrode zegraphene. Kumaleko amaninzi e-graphene egqithiselweyo kwi-elastomer, iileyile aziqhotyoshelwanga ngamandla omnye komnye, ezinokutyibilika ekuphenduleni ubunzima (27). Imisongo ikwanyuse uburhabaxa bomaleko wegraphene, nto leyo enokunceda ekwandiseni ukwahlukana phakathi kweeleya zegraphene kwaye ke yenza kube lula ukutyibilika ko maleko wegraphene.
Izixhobo zekhabhoni zonke zilandelwa ngentshiseko ngenxa yeendleko eziphantsi kunye nokuphuma okuphezulu. Kwimeko yethu, zonke i-carbon transistors zenziwe kusetyenziswa isango legraphene elisezantsi, umthombo ophezulu wegraphene / umnxeba wokucoca, i-semiconductor ye-CNT ehleliweyo, kunye ne-SEBS njenge-dielectric (Umfanekiso 5A). Njengoko kuboniswe kwi-Fig. 5B, isixhobo esinekhabhoni yonke kunye ne-CNTs njengomthombo / ukukhupha kunye nesango (isixhobo esisezantsi) si-opaque ngaphezu kwesixhobo esine-graphene electrode (isixhobo esiphezulu). Oku kungenxa yokuba uthungelwano lwe-CNT lufuna ubukhulu obukhulu kwaye, ngenxa yoko, ukuhanjiswa kwe-optical esezantsi ukuphumeza ukuchasana kwamaphepha afana negraphene (fig. S4). Umzobo we-5 (C kunye no-D) ubonisa ukutshintshwa kommeli kunye neengqungquthela zemveliso phambi koxinzelelo lwe-transistor eyenziwe nge-bilayer MGG electrodes. Ububanzi bomjelo kunye nobude be-transistor engapheliyo yayiyi-800 kunye ne-100 μm, ngokulandelanayo. Umlinganiselo olinganisiweyo wokuvula/uvala mkhulu kune-103 ngemisinga yokuvula nokuvala kumanqanaba ka-10−5 no-10−8 A, ngokulandelelanayo. Ijika eliphumayo libonisa iindlela ezifanelekileyo zokulawula umgca kunye ne-sa turation ngokuxhomekeka okucacileyo kwesango-voltage, ebonisa uqhagamshelwano olufanelekileyo phakathi kwe-CNTs kunye ne-graphene electrode (45). Ukuchasana noqhagamshelwano kunye ne-graphene electrode kwabonwa ukuba kungaphantsi kune-evaporated Au film (bona umzobo S14). Ukuhamba kwe-saturation ye-transistor enwebekayo malunga ne-5.6 cm2 / Vs, ifana ne-polymer-sorted CNT transistors kwi-substrates ye-Si eqinile kunye ne-300-nm SiO2 njenge-dielectric layer. Ukuphuculwa okuqhubekayo kokuhamba kunokwenzeka ngoxinaniso lwetyhubhu ephuculweyo kunye nezinye iintlobo zeebhubhu (46).
(A) Inkqubo yegraphene-based stretchable transistor. Ii-SWNTs, iinanotube zekhabhoni ezinodonga olunye. (B) Ifoto yee-transistors ezinwebekayo ezenziwe nge-graphene electrodes (phezulu) kunye ne-CNT electrodes (ezantsi). Umahluko ekukhanyeni ubonakala ngokucacileyo. (C kunye no-D) Ukudluliselwa kunye nokuphuma kwee-curves ze-graphene-based transistor kwi-SEBS ngaphambi koxinzelelo. (E kunye no-F) Ukuhanjiswa kwee-curves, kwi-current and off current, on / off ratio, kunye nokuhamba kwe-graphene-based transistor kwiintlobo ezahlukeneyo.
Xa isixhobo sekhabhoni esiselubala sasoluliwe kwicala elihambelana nesikhokelo sothutho lwentlawulo, ukuthotywa okuncinci kwabonwa ukuya kuthi ga kwi-120% yoxinzelelo. Ngethuba lokwelula, ukuhamba kwehla ngokuqhubekayo ukusuka kwi-5.6 cm2 / Vs kwi-0% yoxinzelelo ukuya kwi-2.5 cm2 / Vs kwi-120% yoxinzelelo (umzobo 5F). Siphinde sathelekisa ukusebenza kwe-transistor kubude obuhlukeneyo betshaneli (jonga itafile S1). Ngokucacileyo, kuxinzelelo olukhulu njenge-105%, zonke ezi transistors zisabonisa umlinganiselo ophezulu wokuvula/ukuvala (>103) kunye nokuhamba (>3 cm2/Vs). Ukongeza, sishwankathele wonke umsebenzi wamva nje kwii-transistors zekhabhoni zonke (jonga itafile S2) (47-52). Ngokulungiselela ukwenziwa kwesixhobo kwii-elastomers kunye nokusebenzisa ii-MGGs njengabafowunelwa, ii-transistors zethu zekhabhoni zonke zibonisa ukusebenza kakuhle ngokwendlela yokuhamba kunye ne-hysteresis kunye nokunwebeka kakhulu.
Njengesicelo se-transistor ecacileyo ngokupheleleyo kunye nenwebekayo, sasisebenzisa ukulawula ukutshintsha kwe-LED (Umfanekiso 6A). Njengoko kubonisiwe kwi-Fig. 6B, i-LED eluhlaza ingabonwa ngokucacileyo ngokusebenzisa isixhobo esinwebekayo sekhabhoni esibekwe ngqo phezulu. Ngoxa ulula ukuya kwi- ~ 100% (umzobo 6, C kunye no-D), ukukhanya kwe-LED akutshintshi, okuhambelana nokusebenza kwe-transistor echazwe ngasentla (jonga i-movie S1). Le yingxelo yokuqala yeeyunithi zolawulo ezinwebekayo ezenziwe kusetyenziswa i-graphene electrode, ebonisa into entsha enokwenzeka yegraphene yombane eyolulayo.
(A) Isiphaluka se-transistor ukuqhuba i-LED. GND, umhlaba. (B) Ifoto ye-transistor enwebekayo kunye ne-transparent all-carbon transistor kwi-0% yoxinzelelo olubekwe ngaphezulu kwe-LED eluhlaza. (C) I-carbon-transparent and stretchable transistor esetyenziselwa ukutshintsha i-LED ifakwe ngaphezu kwe-LED kwi-0% (ngasekhohlo) kunye ne- ~ 100% ubunzima (ekunene). Iintolo ezimhlophe zikhomba njengeziphawuli ezityheli kwisixhobo ukubonisa utshintsho lomgama olusolulwayo. (D) Umbono wecala le-transistor eyoluliweyo, kunye ne-LED etyhalelwe kwi-elastomer.
Ukuqukumbela, siye saphuhlisa ulwakhiwo lwegraphene olwenziwa elubala olugcina ukuhanjiswa okuphezulu phantsi koxinzelelo olukhulu njengee-electrode ezinwebekayo, ezenziwa yigraphene nanoscroll phakathi kweeleya ezipakishweyo zegraphene. Ezi zixhobo ze-electrode ze-MGG ze-bi- kunye ne-trilayer kwi-elastomer zinokugcina i-21 kunye ne-65%, ngokulandelanayo, ye-0% ye-conductivities yoxinzelelo oluphezulu ukuya kwi-100%, xa kuthelekiswa nokulahlekelwa okupheleleyo kwe-conductivity kwi-5% yoxinzelelo kwi-electrode ye-graphene ye-monolayer eqhelekileyo. . Iindlela zokuqhuba ezongezelelweyo ze-graphene scroll kunye nokusebenzisana okubuthathaka phakathi kweengqimba ezidlulisiweyo zifaka isandla ekuzinzeni okuphezulu kwe-conductivity phantsi koxinzelelo. Siye saphinda sasebenzisa olu lwakhiwo lwegraphene ukwenza iitransistor ezinwebeka zonke zekhabhoni. Ukuza kuthi ga ngoku, le yeyona transistor esekwe kwigraphene enokweleka neyona nto ibonakalayo elubala ngaphandle kokusebenzisa ibuckling. Nangona uphononongo lwangoku luqhutywe ukuze igraphene ikwazi ukunwebeka i-electronics, sikholelwa ukuba le ndlela inokwandiswa kwezinye izinto ze-2D ukwenzela ukuba i-electronics ye-2D ilula.
Indawo enkulu ye-CVD graphene yakhuliswa kwiifoyile ze-Cu ezinqunyanyisiweyo (99.999%; Alfa Aesar) phantsi koxinzelelo olungagungqiyo lwe-0.5 mtorr kunye ne-50-SCCM (i-cubic centimeter eqhelekileyo ngomzuzu) CH4 kunye ne-20-SCCM H2 njenge-precursors kwi-1000 °C. Omabini amacala eCu foil agqunywe yi-monolayer graphene. Uluhlu oluncinci lwe-PMMA (2000 rpm; i-A4, i-Microchem) i-spin-coated kwelinye icala le-Cu foil, eyenza i-PMMA / G / Cu foil / G isakhiwo. emva koko, yonke ifilimu yayifakwe kwi-0.1 M ammonium persulfate [(NH4) 2S2O8] isisombululo malunga neeyure ze-2 ukukhupha iCu foil. Ngexesha lale nkqubo, igraphene engasemva engakhuselekanga iqale yakrazula imida yeenkozo kwaye emva koko yasongwa yaba yimisongo ngenxa yoxinzelelo lomphezulu. Imisongo yayincanyathiselwe kwifilimu yegraphene ephezulu exhaswa yi-PMMA, yenze imisongo ye-PMMA/G/G. Iifilimu zaye zahlanjwa emva koko kumanzi adiyiweyo amaxesha amaninzi kwaye zabekwa kwindawo ekujoliswe kuyo, njengeSiO2/Si eqinile okanye iplastiki engaphantsi. Ngokukhawuleza ukuba ifilimu eqhotyoshelweyo yomile kwi-substrate, isampuli w njengoko ifakwe ngokulandelelana kwi-acetone, 1: 1 i-acetone / IPA (isopropyl alcohol), kunye ne-IPA ye-30 nganye ukususa i-PMMA. Iifilimu zatshiswa kwi-100 ° C kwi-15 min okanye zigcinwe kwi-vacuum ubusuku bonke ukuze zikhuphe ngokupheleleyo amanzi abanjwe ngaphambi kokuba enye ingqimba ye-G / G scroll idluliselwe kuyo. Eli nyathelo lalikukuphepha ukukhutshwa kwefilimu yegraphene kwi-substrate kunye nokuqinisekisa ukugubungela ngokupheleleyo ii-MGGs ngexesha lokukhutshwa kwe-PMMA carrier layer.
I-morphology yesakhiwo seMGG yabonwa kusetyenziswa i-microscope optical (Leica) kunye ne-electron microscope yokuskena (1 kV; FEI). Imakroskopu yamandla eathom (Nanoscope III, Digital Instrument) yasetyenziswa kwindlela yokucofa ukujonga iinkcukacha zemisongo ye-G. Ukucaca kwefilimu kwavavanywa nge-spectrometer ebonakalayo ye-ultraviolet (Agilent Cary 6000i). Kuvavanyo xa ubunzima bebusecaleni kwendlela yokuhamba kwangoku, ifotolithography kunye neplasma ye-O2 zaye zasetyenziselwa ukwenza iipatheni zezakhiwo zegraphene zibe yimicu (~ 300 μm ububanzi kunye ~ 2000 μm ubude), kunye ne-Au (50 nm) i-electrodes yafakwa ngokufudumeleyo kusetyenziswa. imaski yomthunzi kuzo zombini iziphelo zecala elide. Imicu yegraphene iye yadityaniswa ne-SEBS elastomer (~2 cm ububanzi kunye ~ 5 cm ubude), kunye ne-axis ende yemigca ehambelana necala elifutshane le-SEBS lilandelwa yi-BOE (i-buffered oxide etch) (HF: H2O 1:6) etching kunye ne-eutectic gallium indium (EGaIn) njengonxibelelwano lombane. Kuvavanyo loxinzelelo olunxuseneyo, i-graphene structur es (~ 5 × 10 mm) ikhutshelwe kwi-SEBS substrates, ezineezembe ezinde ezinxusene kwicala elide le-SEBS substrate. Kuzo zombini ezi meko, i-G iyonke (ngaphandle kwemisongo ye-G)/SEBS yoluliwe ecaleni kwecala elide le-elastomer kwisixhobo esiphathwayo, kwaye kwi-situ, silinganise utshintsho lwabo lokumelana phantsi koxinzelelo kwisikhululo sovavanyo esine-analyzer ye-semiconductor (Keithley 4200). -SCS).
I-carbon transistors enwebeka kakhulu kwaye ecacileyo yonke i-carbon transistors kwi-elastic substrate yenziwe yimigaqo elandelayo ukuphepha umonakalo we-solvent ye-organic ye-polymer dielectric kunye ne-substrate. Izakhiwo zeMGG zatshintshelwa kwi-SEBS njenge-electrode yesango. Ukufumana i-uniform thin-film polymer dielectric layer (2 μm thick), i-SEBS toluene (80 mg / ml) isisombululo sasi-spin-coated kwi-octadecyltrichlorosilane (OTS) -i-SiO2 / Si substrate ehlaziyiweyo kwi-1000 rpm ye-1 min. Ifilimu ye-dielectric encinci inokudluliselwa ngokulula ukusuka kwi-OTS ye-hydrophobic kwi-substrate ye-SEBS egqunywe ngegraphene njengoko-elungisiwe. I-capacitor ingenziwa ngokufaka i-liquid-metal (EGaIn; Sigma-Aldrich) i-electrode ephezulu yokumisela i-capacitance njengomsebenzi woxinzelelo usebenzisa i-LCR (inductance, capacitance, resistance) imitha (Agilent). Enye inxalenye ye-transistor yayiquka i-polymer-sorted semiconducting CNTs, ilandela iinkqubo ezichazwe ngaphambili (53). Umthombo wepateni / i-electrod ye-electrod yenziwe kwii-substrates ze-SiO2 / Si eziqinileyo. Emva koko, iinxalenye ezimbini, i-dielectric / G / SEBS kunye ne-CNTs / i-patterned G / SiO2 / Si, i-laminated enye kwenye, kwaye ifakwe kwi-BOE ukususa i-substrate ye-SiO2 / Si eqinile. Ngaloo ndlela, ii-transistors ezicacileyo ngokupheleleyo kunye nezinwebekayo zenziwe. Uvavanyo lombane phantsi koxinzelelo lwenziwa kwi-manual stretching setup njengendlela ekhankanywe ngasentla.
Imathiriyeli eyongezelelweyo yeli nqaku iyafumaneka http://advances.sciencemag.org/cgi/content/full/3/9/e1700159/DC1
ikhiwane. S1. Imifanekiso ye-Optical microscopy ye-monolayer MGG kwi-SiO2 / Si substrates kwiindawo ezahlukeneyo zokwandisa.
ikhiwane. S4. Ukuthelekiswa kwe-probe sheet resistances kunye nokudluliselwa @550 nm ye-mono-, i-bi- kunye ne-trilayer plain graphene (izikwere ezimnyama), i-MGG (izangqa ezibomvu), kunye ne-CNTs (unxantathu oluhlaza).
ikhiwane. S7. Utshintsho oluqhelekileyo lokumelana ne-mono- kunye ne-bilayer MGGs (emnyama) kunye ne-G (ebomvu) phantsi kwe-~ ~ 1000 i-cyclic strain yokulayisha ukuya kwi-40 kunye ne-90% ye-parallel strain, ngokulandelanayo.
ikhiwane. S10. Umfanekiso we-SEM we-trilayer MGG kwi-SEBS elastomer emva koxinzelelo, ebonisa umnqamlezo omde wokuwela ngaphezulu kweentanda ezininzi.
ikhiwane. S12. Umfanekiso we-AFM we-trilayer MGG kwi-SEBS elastomer ebhityileyo kakhulu kwi-20% yoxinzelelo, ebonisa ukuba umqulu wawela phezu kokuqhekeka.
itheyibhile S1. Ukushukuma kwe-bilayer MGG-i-carbon nanotube transistors enodonga olunye kubude betshaneli ezahlukeneyo ngaphambi nangemva koxinzelelo.
Eli linqaku elivulekileyo lokufikelela lisasazwe phantsi kwemiqathango yelayisensi ye-Creative Commons Attribution-NonCommercial, evumela ukusetyenziswa, ukuhanjiswa, kunye nokuveliswa kwakhona kuyo nayiphi na indlela, okoko nje ukusetyenziswa okubangelwayo kungeyonzuzo yorhwebo kwaye ibonelele umsebenzi wokuqala ngokufanelekileyo. icatshulwe.
QAPHELA: Sicela idilesi yakho ye-imeyile kuphela ukuze umntu omcebisayo eli phepha azi ukuba ubufuna alibone, kwaye asiyoimeyile eyinkunkuma. Asithathi nayiphi na idilesi ye-imeyile.
Lo mbuzo ngowokuvavanya ukuba ngaba ungumtyeleli wabantu okanye awunguye kwaye uthintele ukuhanjiswa komyalezo ozenzekelayo.
NguNan Liu, Alex Chortos, Ting Lei, Lihua Jin, Taeho Roy Kim, Won-Gyu Bae, Chenxin Zhu, Sihong Wang, Raphael Pfattner, Xiyuan Chen, Robert Sinclair, Zhenan Bao
NguNan Liu, Alex Chortos, Ting Lei, Lihua Jin, Taeho Roy Kim, Won-Gyu Bae, Chenxin Zhu, Sihong Wang, Raphael Pfattner, Xiyuan Chen, Robert Sinclair, Zhenan Bao
© 2021 Umbutho waseMelika wokuPhucula iNzululwazi. Onke Amalungelo Agciniwe. I-AAAS ngumlingane we-HINARI, i-AGORA, i-OARE, i-CHORUS, i-CLOCKSS, i-CrossRef kunye ne-COUNTER.I-Science Advances ISSN 2375-2548.
Ixesha lokuposa: Jan-28-2021